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A general method of accounting for non-steady-state unimolecular kinetics of reactive species in complex
kinetic schemes is described. The method is based on dividing the overall population of affected species into
virtual components corresponding to individual eigenvectors of the master equation matrix. It is shown that
these individual virtual components are in their respective steady states and evolve independently of each
other. The overall treatment is significantly simplified by the fact that only several of these virtual components
need to be considered explicitly, and the contribution of the remainder can be described jointly as resulting
in ordinary chemical branching. The described method reduces the problem of non-steady-state kinetics to a
modest kinetic scheme which can be solved by standard techniques.

I. Introduction

At sufficiently high temperatures or low pressures, unimo-
lecular and chemically activated reactions are characterized by
non-steady-state behavior1-6 when the characteristic time of
reaction becomes comparable with or shorter than the time
required for the population energy distribution to achieve its
steady state. This results in the inapplicability of traditional
methods of describing the kinetics of these reactions since the
very notion of time-independent rate constants becomes invalid.
Instead, the kinetics of such elementary reactions becomes
characterized by a complex concentration vs time dependence
controlled by an interplay of formation, decay, and collisional
relaxation/excitation processes which need to be accounted for
at an energy-resolved level. Moreover, the kinetic fate of the
same species formed in different reactions can be different due
to different energy distributions.5,6

Conditions (temperature and pressure) of the onset of non-
steady-state effects depend on the particular reactive system
being considered. Generally, onset temperatures are lower for
reactions with low energy barriers2,5 and, for several types of
reactions, deviations from steady-state behavior can become
significant under relatively mild conditions. Kiefer et al.3

experimentally determined reaction incubation times (non-
steady-state effect) in the decomposition of norbornene at
temperatures as low as 869 K. Another example of such
reactions is the thermal decomposition of hydrocarbon radicals.
The rate ofn-hexyl radical decomposition already deviates from
its steady-state value at the temperature 1300 K at 1.01× 105

Pa5 (1 atm) and at even lower temperatures if lower pressures
are considered. Similarly mild conditions of onset of non-steady-
state effects can be expected for chemically activated reactions
involving alkyl and substituted alkyl peroxy intermediates (such
as R+ O2 h RO2 f products) due to the low barriers for RO2

decomposition.7

These effects, therefore, have important consequences for
kinetic modeling of complex chemical processes such as
combustion. However, at present, no methods are available for
quantitatively describing kinetics of complex systems in the
presence of non-steady-state effects. In principle, such effects
can be accounted for by dividing the energy scale of the
molecule of interest into small bins and treating each energy
bin as a separate chemical species. Solving the overall kinetics
will thus require accounting for all energy-dependent reactions
of these pseudospecies, as well as conversions between them
due to collisional relaxation/excitation. Such an approach,
however, is impractical since the size of the overall kinetic
problem becomes prohibitively large due to the necessarily small
size of an individual energy bin (which must be smaller than
the value of 〈∆E〉down, an average energy transferred per
downward collision with the bath gas).

In the current work, we describe a general method of
accounting for non-steady-state kinetics of reactive species in
the modeling of complex kinetic schemes. The method is based
on dividing the overall population of affected species into virtual
components corresponding to individual eigenvectors of the
master equation matrix. It is shown that these individual virtual
components (1) are in their respective steady states and (2)
evolve independently of each other. The overall treatment is
significantly simplified by the fact that only several of these
virtual components need to be considered explicitly and the
contribution of the remainder can be described jointly as
resulting in ordinary chemical branching.

The described method reduces the problem of non-steady-
state kinetics to a modest kinetic scheme which can be solved
by standard techniques. Currently, this method is capable of
treating isothermal kinetics at constant pressure. In section II,
a general description of the method is presented. Section III
describes application of the method to the unimolecular
decomposition ofn-butyl radical (a comparison with the exact* Corresponding author. E-mail: knyazev@cua.edu.
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solution of the time-dependent master equation is given) and
to the kinetic modeling of the oxidative pyrolysis of ann-C4H9I/
n-C4H10/O2 mixture. Discussion is provided in section IV.

II. Method

The current description of non-steady-state unimolecular
kinetics as part of a large kinetic scheme is based on a one-
dimensional (in energy only, effects of angular momentum
conservation are neglected) master equation describing the
interplay of formation, collisional relaxation/excitation, and
reaction of active molecules. In many respects, the approach of
the current work is based on that of Schranz and Nordholm1

and Smith et al.8 In this section, first, a general solution of a
time-dependent master equation is described as kinetics of
“virtual components” of the overall concentration of active
molecules. It is shown that these “virtual components” (related
to the eigenvectors of the master equation matrix) are in their
corresponding steady states and evolve independently of each
other. As a result, the problem of non-steady-state kinetics is
reduced to a large kinetic scheme. Then, it is shown that this
large kinetic scheme can be substantially reduced in size (to
only few reactions) without any loss of accuracy. The resultant
smaller kinetic scheme can be included directly in the complex
kinetic mechanism of the overall process of interest and solved
using standard methods. Finally, a short summary of the
algorithm is presented.

II.1. Representation of Non-Steady-State Kinetics by a
Large Modified Kinetic Scheme. II.1.1. Kinetics of the
Population Energy Distribution Function.We consider a
complex kinetic model described by a large number of
elementary reactions:

Let us select those parts of the overall eq 1 (subsets M1,
M2, and M3) which describe the evolution of species A
characterized by non-steady-state behavior:

Here, A is formed in (possibly, several) reactions indexed by
m1 and decays via reactions indexed by m2 and m3 either
unimolecularly (m2) or in reactions with other species (m3). In
the absence of knowledge of exactly how the energy distribution
of A might affect the rates of reactions m3, we will assume
that these reactions can be described by simple rate constants
km3.

The master equation describing the interplay between energy-
dependent reactions and collisional relaxation/excitation can be
written for species A as

whereg(E,t) is the population of energy levelE at timet, R(E,E′)
is the rate coefficient of collisional energy transfer from energy
level E′ to energy levelE, k(E) is the energy-dependent
microscopic rate constant of decay via all reactions m2,-u(t)
is the pseudo-first-order rate coefficient of A decay via all
reactions m3, andr(E,t) is the energy- and time-dependent rate
of formation of A species with a particular energyE.

Equation 3 can be presented in matrix form (here the energy
scale is divided into an array of discrete statesEi, each with
width δE, and energy-dependent functions are represented by
vectors).

Here,J is the matrix of a simpler master equation (see ref 9)
corresponding to the thermal unimolecular reaction, different
channels of which are referenced by indices m2 in eq 2.

We can note that

wherexm1 is the energy distribution of A molecules formed in
reaction m1 (normalized such thatδE∑ixm1(Ei) ) 1). [reactants-
(m1)] and [reactants(m3)] are concentrations or products of
concentrations of all reactants (other than A) of reactions m1
and m3, respectively. Equation 8 can accommodate various
types of excitation mechanisms such as chemical activation (see
ref 10 for the functional form ofxm1(E) dependence), thermal
activation (xm1 is given by the Boltzmann distribution), laser
excitation (xm1(E) is aδ-function and [reactants(m1)] becomes
a time-dependent laser intensity), etc.

Equation 4 can be transformed into

via multiplying by S, a diagonal matrix with elements

Here,f is the normalized (δE∑if(Ei) ) 1) Boltzmann distribution
vector,q(t) ) Sg(t), andp(t) ) Sr(t). The matrixB ) SJS-1

is Hermitian, all its eigenvalues are real and negative, and the
corresponding eigenvectorscj form a complete orthogonal set
(see ref 9 for properties ofB and J) which we choose to be
orthonormal ((cj1,cj2) ) 0 for j1 * j2 and (cj,cj) ) 1). (We use
here the definition of a scalar product of vectors11 (x,y) )
∫0

∞x(E)y(E) dE ) ∑ix(Ei)y(Ei)δE) Eigenvaluesλj of J coincide
with those ofB and eigenvectors ofJ, ej, are related tocj via ej

) S-1 cj.
The solution of eq 9 is given (see ref 12, p 380, 384) by

∂g(E,t)
∂t

) ∫0

∞
[R(E,E′) g(E′,t) - R(E′,E) g(E,t)] dE′ -

k(E) g(E,t) + u(t) g(E,t) + r(E,t) (3)

dg(t)
dt

) Jg(t) + u(t)g(t) + r (t) (4)

Ji,l ) {R(Ei,El)δE, i * l

-k(E) - δE∑
l*i

R(El, Ei), i ) l
(5)

k(E) ) ∑
m2

km2(E) or k ) ∑
m2

km2 (6)

u(t) ) -∑
m3

km3[reactants(m3)] (7)

r (t) ) ∑
m1

km1[reactants(m1)]xm1 (8)

dq(t)
dt

) Bq(t) + u(t)q(t) + p(t) (9)

Sii ) fi
-1/2 ≡ f-1/2(Ei) (10)
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whereV(t) ) ∫0
t u(s) ds, qo ) Sgo, go is the initial population

vector, andI is the unit matrix.
We now expandp(t) andqo(t) in terms ofcj, the eigenvectors

of B:

Using the eigenvalue relationBcj ) λjcj, we obtain from (11)

Multiplying both sides byS-1, we obtain for the population
distribution of species A

where

The overall population of A molecules is given by summing
g(Ei) over all energies:

where Φj are the sums of all components of the individual
eigenvectorsej

and

Vectors gj(t) (and functionsGj(t)) can be understood as
components of the overallg(t) population distribution function
(and the overall populationG(t)) corresponding to individual

eigenvectors. The temporal evolution of these components can
be analyzed by evaluating derivatives of expressions 16 and
19.

Comparing these equations with 16 and 19 and noting thatgj(0)
) êj ej andGj(0) ) êj Φj, we obtain

As can be seen from eqs 15-19 and 21-22, the population
G(t) of species A can be considered as composed of components
corresponding to the individual eigenvaluesλj of the matrixJ
(or B). The time dependence of these individual population
(Gj(t)) and energy distribution (gj(t)) components is governed
by the simple kinetic eqs 21 and 22. Changes inGj(t) andgj(t)
can be interpreted as due to (1) unimolecular reaction with rate
constant-λj, (2) reactions with other species with pseudo-first-
order rate constant-u(t) (eq 7), and (3) formation via other
reactions with effective fluxθj(t)Φj (or θj(t)ej for gj(t)) where
θj(t) is given by eq 12. It is important that during the course of
the reactions these individual components are in their individual
steady states, i.e., time and energy dependencies are separated
and changes occur only in the absolute values ofGj(t) andgj(t)
but not in the energy distribution shapes (determined byej).
The components evolve independently of each other, i.e., any
change ing j1(t) can influencegj2(t) (j1 * j2) only indirectly
via changes in concentrations of other species which, in turn,
may result in changes to the time-dependent parametersu(t)
and θj(t). For practical purposes, it is convenient to treat the
overall population of species A as consisting of these virtual
steady-state “components” Aj, each with its population distribu-
tion functiongj(t). Then, [A] ) ∑j[A j] and [Aj] ≡ Gj(t).

II.1.2. EffectiVe Rate Constants of Reactions InVolVing Virtual
Aj Components. Unimolecular Decay.The unimolecular decay
of molecule A may result in several channels described as
different reactions within the subset M2 (see eq 2) and indexed
by m2. The formation rate of the products of reaction m2 caused
by the unimolecular decay ofG(t) will be given by a sum of
rates due to individualj-th components.

where

q(t) ) exp[Bt + V(t)I ]qo +

∫0

t
exp[B(t - s) + (V(t) - V(s))I ]p(s) ds (11)

p(t) ) ∑
j

θj(t)cj,

whereθj(t) ) (p(t),cj) ) ∑
i

p(Ei,t)cj(Ei)δE (12)

qo ) ∑
j

êjcj, whereêj ) (qo,cj) ) ∑
i

qo(Ei)cj(Ei)δE (13)

q(t) ) ∑
j

êj exp[λjt + V(t)]cj +

∫0

t∑
j

exp[λj(t - s) + V(t) - V(s)]θj(s)cj ds (14)

g(t) ) ∑
j

êj exp[λjt + V(t)]ej +

∫0

t∑
j

exp[λj(t - s) + V(t) - V(s)]θj(s)ej ds

) ∑
j

gj(t) (15)

gj(t) ) ej{êj exp[λjt + V(t)] +

∫0

t
exp[λj(t - s) + V(t) - V(s)]θj(s) ds} (16)

G(t) ) ∑
i

g(Ei,t)δE ) ∑
j

Φj{êj exp[λjt + V(t)] +

∫0

t
θj(s) exp[λj(t - s) + V(t) - V(s)] ds}

) ∑
j

Gj(t) (17)

Φj ) ∑
i

ej(Ei)δE (18)

Gj(t) ) Φj{êj exp[λjt + V(t)] +

∫0

t
θj(s) exp[λj(t - s) + V(t) - V(s)] ds} ) ∑

i

gj(Ei,t)δE

(19)

dgj(t)

dt
) ej{êj(λj + u(t)) exp[λjt + V(t)] +

(λjt + u(t)) ∫0

t
exp[λj(t - s) + V(t) - V(s)]θj(s) ds + θj(t)}

(20)

dGj(t)

dt
) Φj{êj(λj + u(t)) exp[λjt + V(t)] + (λjt +

u(t)) exp[λjt + V(t)]∫0

t
θj(s) exp[-λjs - V(s)] ds + θj(t)}

dgj(t)

dt
) (λj + u(t))gj(t) + θj(t)ej; gj(0) ) êjej (21)

dGj(t)

dt
) (λj + u(t))Gj(t) + θj(t)Φj; Gj(0) ) êjΦj (22)

wm2(t) ) (∂[products(m2)]

∂t )
from reac.m2

)

∑
i

km2(Ei)g(Ei,t)δE ) ∑
j

wj
m2(t) (23)

wj
m2(t) ) ∑

i

km2(Ei)gj(Ei,t)δE ) khj
m2Gj(t) (24)
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Here,khj
m2, obtained by averagingkm2(E) over the shape of the

j-th component distribution function

can be identified with the effective rate constant of unimolecular
decay of Aj via reaction channel m2.

One can show that for each Aj, the sum of effective rate
constants over all m2 channels must be equal to-λj.

For the time evolution of the overall population, we can write

At the same time, from eqs 17 and 22 we have

Thus,-∑jλjGj(t) ) ∑ik(Ei)g(Ei)δE ) ∑j∑ik(Ei)gj(Ei)δE. Equat-
ing terms with the same time dependencies, we obtain for each
j λj ) -(Φj)-1∑ik(Ei)ej(Ei)δE ) -∑m2khj

m2 which coincides
with eq 26.

Formation.The energy-dependent rate of formation of species
A in reaction subset M1 (eq 2) can also be presented as a sum
of contributions due to Aj:

which, in turn, can be expressed via rates of individual reactions
from subset M1 (see eqs 8 and 12):

where

Thus, the expression for the flux (rate of formation) of Aj virtual
components of A from reactions of the M1 subset acquires the
form

wherek̃j
m1 is an effective rate constant of the formation of Aj in

reaction m1. The sum ofk̃j
m1 over all j must be equal to the rate

constantkm1 corresponding to the total flux ofG(t) from reaction
m1. This, indeed, can be confirmed:

(we used here the representation ofSxm1 in terms of eigenvectors
cj of B: Sxm1 ) ∑jcj(cj,Sxm1)).

II.1.3. Expansion of the Kinetic Scheme.The mutual inde-
pendence of theGj(t) ) [A j] components of the overall
populationG(t) ) [A] and eqs 22, 24, and 29 which describe the
temporal evolution ofGj(t) allow us to expand eqs 2 governing
the kinetics of species A in terms of virtual Aj constituents.
This expansion of the kinetic scheme proceeds via the following
algorithm.

(1) Each A-producing reaction m1 of the subset M1 is
transformed intoN (N is the total number of eigenvalues of
matrix B, 1 e j e N) reactions indexed by the double index
(j
m1), each “producing” the component Aj. The rate constant of

each “new” reaction (j
m1) is k̃j

m1 given by expression 28.
(2) Each reaction (or channel) m2 of the subset M2 is

transformed intoN unimolecular reactions (j
m2) of A j compo-

nents, each “producing” Products(m2) with the first-order rate
constantk̃j

m2 given by expression 25.
(3) Each reaction m3 of A with other species (subset M3) is

transformed intoN analogous reactions (j
m3) of A j components

producing Products(m3) with rate constantskm3.

(4) The initial “concentration” of component Aj is given by

The resultant total kinetic scheme consisting of all reactions
not included in (M1, M2, M3) and the virtual reactions of eq
30 can be solved by any method normally used in macroscopic
kinetics. However, the total number of kinetic equations can
become exceedingly large since the number of virtual reactions
in eq 30 equalsN multiplied by the number of original reactions
in subsets M1, M2, and M3. Fortunately, this very large scheme
can be significantly simplified, as shown in the next section.

II.2. Reduction of the Large Modified Kinetic Scheme.
II.2.1. Spectra of EigenValues and Shapes of EigenVectors.Let
us arrange all eigenvalues in order of their increasing absolute
values (|λ1| e |λ2| e ... |λN|). The smallest (in absolute value)
eigenvalue of matrixesJ andB, λ1, is identified with the steady-
state rate constant of thermal unimolecular decomposition of
species A (see, for example, ref 9). The eigenvectore1 gives
the corresponding steady-state energy distribution. It has been
shown (ref 13) that, for a matrix withoutk(E) (see eq 5), other

khj
m2 ) (∑

i

km2(Ei)ej(Ei)δE)/Φj (25)

∑
m2

khj
m2 ) -λj (26)

dG(t)

dt
) -∑

i

k(Ei)g(Ei)δE + u(t)G(t) + ∑
i

r(Ei,t)δE

dG(t)

dt
) ∑

j

λjGj(t) + u(t)G(t) + ∑
i

r(Ei,t)δE

(∂g(t)

∂t )
from M1

) ∑
j

(∂gj(t)

∂t )
from M1

and

(∂G(t)

∂t )
from M1

) ∑
j

(∂Gj(t)

∂t )
from M1

(∂gj(t)

∂t )
from M1

) θj(t)ej ) (Sr,Sej)ej ) ej∑
i

r(Ei,t)ej(Ei)

f(Ei)
δE )

ej∑
i
∑
m1

ej(Ei)

f(Ei)
km1xm1(Ei)δE[reactants(m1)])

ej(Φj)
-1∑

m1

k̃j
m1[reactants(m1)] (27)

k̃j
m1 ) km1Φj∑

i

ej(Ei)

f(Ei)
xm1(Ei)δE (28)

(∂Gj(t)

∂t )
from M1

) ∑
m1

k̃j
m1[reactants(m1)] (29)

∑
j

k̃j
m1 ) ∑

j

km1Φj(Sej,Sxm1) ) km1∑
j

Φj(cj,Sxm1) )

km1∑
i
∑

j

Sii
-1cj(Ei)(cj,Sxm1)δE ) km1∑

i

Sii
-1Siix

m1(Ei)δE )

km1∑
i

xm1(Ei)δE ) km1

[A j(0)] ) Gj(0) ) êjΦj ) Φj∑
i

go(Ei)

f(Ei)
ej(Ei)δE (31)
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eigenvalues correspond to the rates of collisional relaxation of
A. For the full matrix, ifk(E) are not negligible compared with
the collision rate (ω), they will influence the spectrum of
eigenvalues. At sufficiently high energies,k(E) become sub-
stantially higher thanω and the corresponding nondiagonal
elements of matrixJ (andB) become negligible compared with
the diagonal ones which, in turn, are approximately equal to
-k(E) (see eq 5). This brings into the spectrum of eigenvalues
λj ≈ -k(Ej) for such j that k(Ej) . ω. The corresponding
eigenvectors are localized in the vicinity ofEj (see, for example,
ref 1).

Figure 1 demonstrates the spectrum of eigenvalues of a typical
reactive system at several pressures. To avoid plot congestion,
only the first 10 eigenvalues at each pressure are represented
with symbols and|λj| vs j dependence is shown by lines for all
other j. One can see that the spectrum can be qualitatively
divided into three parts: (1) several (5-10 in this case) eigen-
values which are significantly lower than the collision frequency
ω, (2) eigenvalues approximately equal to the collision fre-
quency (|λj| ≈ ω), and (3) eigenvalues approximately equal to
microscopic rate constants (|λj| ≈ k(Ej)). The corresponding
shapes of the eigenvectors are illustrated in Figure 2.

While the shape ofe1(E) represents the steady-state distribu-
tion of the thermal unimolecular reaction (see above and ref
9), other eigenvectors have very little physical meaning. As can
be seen from Figure 2, theseej(E) dependencies may even
change sign at some energies. Their integral characteristics (such
as Gj(t), khj

m1, and k̃j
m1) can acquire negative values. This

stresses the virtual nature of the Aj components introduced here
for the ease of analysis.

II.2.2. Reduction of the Kinetic Scheme.In kinetic models of
large systems (eq 1), generally, all bimolecular reactions have
characteristic rates which are lower than the frequency of
collisions with the bath gasω. In pertinence to the kinetic

scheme in eq 30, this means that for each virtual Aj component
of the overall population of species A such that the correspond-
ing eigenvalue|λj| is approximately equal to or higher thanω,
kinetics described by eq 30 will happen “instantly” on the time
scale of the overall kinetics of the system. For these Aj, reactions
of the subset M3 can be neglected since their rates are
significantly slower than those of reactions (j

m2) (m2 ∈ M2,
overall rate constant|λj|).

Therefore, for eachj with large enough|λj|, the scheme of
eq 30 can be replaced by a set of “direct” multichannel reactions
corresponding to the original reactions m1, different channels
of which result in products of reactions m2.

Here, individual channel rate constants are given by

Furthermore, since we have the same sets of reactions M2 and
M3 for all j, the scheme of eq 32 can be summed over all
sufficiently large eigenvalues to result in only several multi-
channel reactions:

where

Here, we have chosenJ such that all|λj| are large enough for
all j g J.

Figure 1. Spectrum of eigenvalues of the matrixJ (and B) for the
decomposition ofn-C4H9 radicals at several pressures (T ) 1500 K,
O2 as bath gas). To avoid plot congestion, only the first 10 eigenvalues
at each pressure are represented with symbols and|λj| vs j dependence
is shown by lines for all otherj: (O) pressure of 1.33 Pa (10-2 Torr);
(3) 133.3 Pa (1 Torr); (0) 1.33× 104 Pa (100 Torr). Arrows show the
corresponding values of the collisional frequency,ω. The heavy solid
line represents thek(E) vs E dependence.

Figure 2. Shapes of eigenvectorscj of the master equation matrixB.
Decomposition ofn-C4H9 radicals at 133.3 Pa (1 Torr) of O2 and 1500
K.

kj
m1,m2) k̃j

m1( khj
m2

∑
m2

khj
m2) ) k̃j

m1 khj
m2|λj|-1 (33)

km1,m2) ∑
jgJ

kj
m1,m2) ∑

jgJ

k̃j
m1 khj

m2|λj|-1 (35)
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The initial “concentrations” of Aj given by eq 31 will be
transformed into increments of concentrations of Products(m2)
due to the “instant” reactions (j

m2), i.e., the initial concentra-
tions of Products(m2) need to be increased by

The practical computation ofkm1,m2and∆[products(m2)] can
be somewhat simplified by the use of a “correlation function”
bm2(E),

where

has the meaning of an eigenvector-specific branching fraction
for channel m2.

The physical meaning of thebm2(E) function can be under-
stood from the fact that bothkm1,m2and∆[products(m2)] values
are determined by the correlation, or overlap, betweenbm2(E),
on the one side, andxm1(E) (the energy distribution of molecules
formed in reaction m1) org0(E) (the initial energy distribution),
on the other (see eqs 25, 28, 35, and 36).

II.3. Summary of Algorithm. (1) Analyze the reaction
scheme of eq 2 by identifying each A-forming reaction of the
subset M1 with a corresponding distribution functionxm1

(energy distribution of A molecules formed in reaction m1)
normalized such that∑ixm1(Ei)δE ) 1.

(2) For a particular temperature and pressure, find allN
eigenvaluesλj and corresponding eigenvectorsej of the master
equation matrixJ,

(3) Select a “cutoff” factorFCO such that all eigenvalue-
specific unimolecular reactions (j

m2) of virtual components Aj
are considered as occurring “instantly” if the correspondingλj

are such that

whereω is the collision frequency. The choice of theFCO value
is determined by the ratios ofω and the rates of the fastest
bimolecular reactions of species A (in the unlikely case of these
being comparable withω, one can useFCO e 1 or choose to
solve the nonreduced modified kinetic scheme, which is more
computationally demanding). Arrange allN eigenvalues such
thatλj satisfy the requirement of eq 41 for allj g J and do not
satisfy it for all 1 e j < J. Here,J will be significantly less
than the total number of eigenvaluesN.

(4) The reaction scheme of eq 2 is transformed intoJ schemes.
The firstJ - 1 of these schemes (described by eq 30) involve
virtual j-specific components Aj with rate constants given by
expressions 25 and 28,

where

The last,J-th scheme is described by eq 34 and consists of
“direct” multichannel reactions (not involving A or Aj) with
rate constants for individual channels leading from (Reactants-
(m1)) to (Products(m2)) given by

wherek̃j
m1 andkhj

m2 are computed via formulas 25 and 28. Initial
“concentrations” of Aj are given by eq 31 and those of Products-
(m2) by eq 36 (also see eqs 39 and 40).

Thus, the initial overall reaction scheme of eq 1 which
involved non-steady-state kinetics of species A is reduced to a
slightly larger kinetic scheme where all A-involving reactions
are substituted with pseudoreactions described by eqs 30 and
34. The main benefit of this substitution is that the resultant
overall reaction scheme involves only “normal” reactions with
time-independent rate constants. This overall scheme can thus
be solved using any ordinarily applied method.

III. Applications

III.1. Decomposition of n-C4H9 Radical. We consider the
kinetics of decomposition ofn-butyl radicals which are formed
in two different processes: (1) hydrogen atom abstraction from
n-C4H10 and (2) thermal decomposition ofn-butyl iodide,
n-C4H9I. These two processes result in distinctly different initial
energy distributions of then-C4H9 formed. While the abstraction
reaction is not likely to significantly deplete the energy of those
vibrational modes ofn-butane that will remain in the butyl
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fragment, the reaction ofn-butyl iodide decomposition will leave
the formed butyl radicals relatively cold.

To compute the energy distribution ofn-butyl radicals formed
in the decomposition ofn-C4H9I, the formulas of the “prior
distribution” method14 were used. The fraction ofn-C4H9 formed
with vibrational energyE1 from decomposition ofn-C4H9I with
total energyE is given by14

where the normalization integral

F1(E1) andF2(E2) are densities of states of vibrational degrees
of freedom ofn-C4H9 and I atom (δ-function), andFt(Et) and
Fr(Er) are translational and rotational densities of states of
products. As has been discussed by Baer and Hase (see ref 14,
section 9.1.1), two translational degrees of freedom need to be
included, which results inFt(Et) being constant,Ft(Et) ) Rt. Since
we are interested in energy distribution in all active degrees of
freedom ofn-C4H9 and not just vibrational ones, one active one-
dimensional overall rotation is added toF1(E1). Thus, Fr(Er)
accounts for only two rotational degrees of freedom and,
therefore, is constant:Fr(Er) ) Rr. SinceF2(E2) ) δ(E2), we
obtain forP(E1|E)

To obtain the overall energy distribution in the active modes
of n-C4H9 formed in the decomposition ofn-C4H9I, one needs
to averageP(E1|E) over the energy-dependent flux of decom-
posingn-C4H9I molecules,F(E) ) k(E)g(E) wherek(E) and
g(E) are the energy-dependent microscopic rate constants and
steady-state population distribution ofn-C4H9I, respectively.
Figure 3 illustrates the population energy distributions ofn-C4H9

formed in the abstraction reaction (assumed to coincide with

the Boltzmann distribution at 1500 K) and in the decomposition
of n-butyl iodide.

The geometry and vibrational frequencies ofn-C4H9I were
obtained in ab initio calculations (GAUSSIAN 94,15 UHF/6-
31G* with LANL2DZ basis for iodine, results are listed in
Appendix). The properties of the transition state forn-C4H9I
decomposition (Appendix) were selected to reproduce the high-
pressure limit Arrhenius dependencek ) 5 × 1014 exp(-52
kcal mol-1/RT) s-1 (based on analogy with the decomposition
of n-pentyl iodide16). The model of then-C4H9 decomposition
reaction was taken from Knyazev and Slagle.17 Calculations
were performed for the temperature of 1500 K and pressure of
133.3 Pa (1 Torr) (O2 as bath gas). The exponential-down
model9,18 of collisional energy transfer was used. The selected
value of the average energy transferred per collision was〈∆E〉all

) -30 cm-1 (corresponding to〈∆E〉down ) 192 cm-1 at 1500
K). The same value of〈∆E〉down was used forn-C4H9I
decomposition.

Solutions of the master equation (eigenvalues and eigenvec-
tors of matrix J) were obtained via the method based on
Householder’s tridiagonalization algorithm19 which was used
earlier by Bedanov et al.20 and Tsang et al.5 Calculations were
performed with an energy bin sizeδE ) 30 cm-1 and matrix
size 1400× 1400. The kinetics ofn-butyl radicals was analyzed
using five virtual components corresponding to the first five
eigenvalues of the corresponding master equation matrixJ. The
cutoff for eigenvalues (λj) was based on the requirementλj <
ω /10 (FCO ) 10; ω ) 3.28 × 106 s-1 is the frequency of
collisions with the bath gas). Rate constants for the formation
of each of the virtual components were calculated via eq 28.
Conversion factors between initial concentrations ofn-C4H9 and
those of virtual components were obtained via eq 31. Rate
constants for the “direct” instantaneous reaction (accounting for
contributions of all eigenvectors with high eigenvalues) were
obtained via eq 39 and increments of product concentrations
due to this “direct” reaction via eq 40. All calculated virtual
component parameters for the twon-butyl radical energy
distributions used are listed in Table 1.

Figure 4 illustrates the kinetics ofn-C4H9 formed in the
abstraction reaction, decomposition reaction, and in a combina-
tion of both abstraction and decomposition. Calculated concen-
tration vs time profiles obtained from (1) the exact solution of
a corresponding time-dependent master equation, (2) kinetic
analysis based on the algorithm described above with five virtual
components taken into account, and (3) the steady-state master
equation solution are compared. As can be seen from the plots,
at reaction times longer than 10/ω, good agreement between
the current kinetic analysis based on the explicit treatment of
virtual components and the exact master equation solution is
achieved.

III.2. Oxidative Pyrolysis of an n-C4H9I/n-C4H10 Mixture.
We consider a simplified kinetic scheme of oxidative pyrolysis
of a mixture ofn-butyl iodide (0.1%),n-butane (5%), and oxy-
gen (remaining 94.9%) at 1500 K and a pressure of 133.3 Pa
(1 Torr). The elementary reactions involved are listed in Table
2. The process is initiated by reaction 1, the thermal decomposi-
tion of n-butyl iodide producingn-butyl radicals with relatively
low energies (see section III.1).n-C4H9 radicals can either
decompose to C2H5 and C2H4 (reaction 2) or react with O2
forming 1-butene and HO2 (reaction 4). Subsequent decomposi-
tion of ethyl radicals into ethylene and H atom results in appear-
ance of OH and O atoms (via reaction H+ O2 f OH + O)
which abstract hydrogen atoms from butane forming secondary
and normal butyl radicals. These butyl radicals formed in

Figure 3. Energy distribution ofn-C4H9 radicals produced in the
unimolecular decomposition ofn-C4H9I (solid line) and in abstraction
reactions (dashed line, Boltzmann distribution) at 1500 K and 133.3
Pa (1 Torr) of O2 (bath gas). Vertical line indicates then-C4H9

decomposition reaction energy barrier.

P(E1|E) dE1 )
F1(E1) dE1

N(E)
∫0

E-E1∫0

E-E1-EtFt(Et)Fr(Er)F2(E -
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E ∫0
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E
F1(E1)(E - E1) dE1
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abstraction reactions have Boltzmann energy distributions and
decompose significantly faster than those formed in the decom-
position ofn-butyl iodide. Reactions involving two species dis-
play non-steady-state effects, those of formation and decom-
position ofn-C4H9 andsec-C4H9. The treatment of non-steady-
state behavior in then-butyl radical decomposition was described
in section III.1. Decomposition of secondary butyl radical
(reaction 12) was treated in a similar manner. The kinetics of
five virtual components was considered explicitly. The model
of reaction 12 was taken from Knyazev and Slagle.25 Rate
constants of the reactions producing virtual components of butyl
radical were calculated via eq 28 and those of “direct” instanta-
neous reactions via eq 39. The resultant modified kinetic scheme
and corresponding rate constants are presented in Table 3.

The modified kinetic scheme was solved using the
CHEMKIN26 program package. For comparison, the kinetic
scheme of Table 2 (non-steady-state effects are ignored and the
rate constants of butyl decomposition are obtained under a
steady-state master equation approximation) was also solved
for the same conditions. Figures 5-7 illustrate the kinetics of
selected stable products and butyl radicals obtained (1) under
the steady-state approximation and (2) using the method of
accounting for non-steady-state kinetics described in the current
work. As can be seen from the plots, the two different
approaches result in significant differences in concentration vs
time profiles. Figure 7 illustrates kinetics of individual virtual
components ofn-C4H9 as well as the overall [n-C4H9] vs time
profile. As discussed in section II.2.2, virtual components have
no physical meaning, and it is not surprising that concentrations
of some of them acquire negative values.

IV. Discussion

The only two quantitative experimental studies of non-steady-
state effects in reactions of polyatomic molecules are those of
Kiefer et al.3 and Fulle et al.27 Kiefer et al. were able to
quantitatively determine incubation times for the thermal

dissociation of norbornene in shock tubes using the laser
schlieren technique. These incubation times correspond to a time
delay required for a transition from the room-temperature
distribution of molecules to the higher energy steady-state

TABLE 1: Virtual Component Rate Constants for
Decomposition ofn-C4H9 and sec-C4H9 Radicals at 1500 K
and 133.3 Pa (1 Torr) of O2

ja
k̃j

m1/
km1 khj

m2 b Φj

[Aj(0)]/
[A(0)]

km1,m2/
km1

∆[products(m2)]/
[A(0)]

n-C4H9 Formed in Decomposition ofn-C4H9I
1 2.073 18616.5 -0.287 2.073
2 -1.806 60716 0.153 -1.806
3 0.981 1.187× 105 -0.116 0.981
4 -0.238 1.906× 105 -0.100 -0.238
5 -0.0524 2.743× 105 0.0924 -0.0524

0.0425c 0.0425c

n-C4H9 Formed in Abstraction Reactions (Boltzmann Distribution)
1 0.0824 18616.5 -0.287 0.0824
2 0.0233 60716 0.153 0.0233
3 0.0135 1.187× 105 -0.116 0.0135
4 0.0101 1.906× 105 -0.100 0.0101
5 0.00854 2.743× 105 0.0924 0.00854

0.8622c 0.8622c

sec-C4H9 Formed in Abstraction Reactions (Boltzmann Distribution)
1 0.1422 13210 0.3770 0.1422
2 0.0331 47196 -0.1818 0.0331
3 0.0171 94957 -0.1308 0.0171
4 0.0116 1.553× 105 -0.1075 0.0116
5 0.00897 2.269× 105 -0.0947 0.00897

0.7872c 0.7872c

a Virtual component number.b Coincides with the corresponding
eigenvalue since only one reaction channel has nonnegligible rate.
c Parameters for “direct” reaction. Figure 4. Concentration vs time profiles obtained in modeling of the

n-C4H9 decomposition at 1500 K and 133.3 Pa (1 Torr) of O2 via the
exact solution of the time-dependent master equation (b), the current
algorithm based on the explicit accounting for the first five virtual
components (O), and the steady-state solution (1): (a) Initial energy
distribution ofn-C4H9 is thermal (Boltzmann); (b) initial distribution
is located mostly at low energies (from the thermal decomposition of
n-C4H9I); (c) combination of initial Boltzmann distribution and a
constant flux ofn-C4H9 from the decomposition ofn-C4H9I, 2000
molecules s-1). Vertical lines mark reaction times equal to 1/ω (solid
line) and 10/ω (dotted line) whereω is the frequency of collisions
with the bath gas. The plot indicates a good convergence between the
exact results and those obtained via the current method at all times
longer than 10/ω.

TABLE 2: Reactions Included in the Simplified Mechanism
of n-C4H9I/n-C4H10/O2 Oxidative Pyrolysis

no. reaction rate constanta ref

1 C4H9I f n-C4H9 + I 2496.8b

2 n-C4H9 f C2H5 + C2H4 18616.5c 17
3 C2H5 f H + C2H4 5192.0d 21
4 n-C4H9 + O2 f1-C4H8 + HO2 4.5× 10-13 22
5 H + O2 f OH + O 1.17× 10-12 23
6 H + C4H10 f n-C4H9 + H2 8.45× 10-12e 24
7 O + C4H10 f n-C4H9 + OH 7.21× 10-12e 24
8 OH + C4H10 f n-C4H9 + H2O 3.50× 10-12e 24
9 O + C4H10 f sec-C4H9 + OH 2.88× 10-11e 24

10 OH+ C4H10 f sec-C4H9 + H2O 6.97× 10-12e 24
11 H + C4H10 f sec-C4H9 + H2 2.20× 10-11e 24
12 sec-C4H9 f CH3 + C3H6 13210f 25
13 sec-C4H9 + O2 f 2-C4H8 + HO2 2.00× 10-13 22
14 sec-C4H9 + O2 f 1-C4H8 + HO2 8.48× 10-14 22
15 CH3 + O2 f CH2O + OH 2.74× 10-14 23

a Rate constant units are s-1 and cm3 molecule-1 s-1. b Calculated
in the current work (see section III.1).c Calculated under steady-state
assumption using the model of ref 17.d Calculated using the model of
ref 21. e Calculated based on additivity coefficients of Warnatz.24

f Calculated under steady-state assumption using the model of ref 25.
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distribution appropriate for a molecule in the falloff at high
temperature. The experimental results of Kiefer et al. were
modeled by Barker and King4 who reproduced the observed
kinetics via a solution of the time-dependent master equation.
Using the same experimental technique, Fulle et al. estimated
incubation times in the unimolecular decomposition of furane.
In general, direct experimental information on non-steady-state
effects is difficult to obtain because both of the competing
processes (reaction and vibrational relaxation/activation) are very
fast and, thus, not easily detectable in real-time experiments.

While experimental information is sparse, statistical unimo-
lecular rate theory predicts the occurrence of non-steady-state
effects in a large variety of reaction types (see Introduction).
Such effects present a significant problem for the modeling of
large kinetic schemes such as those found in combustion
chemistry. Methods of solving complex kinetics are based on
first establishing a mechanism (eq 1) characterized by time-
independent rate coefficients. Then the corresponding system
of linear differential equations is solved numerically to obtain
concentration vs time profiles for all species involved (see, for
example, ref 28). Non-steady-state effects result in kinetics
which is not described by time-independent rate constants. If
initial energy distributions and those of the activating processes
are known, the resultant concentration vs time dependencies
can be obtained via a solution of the corresponding master
equation and fitted with phenomenological expressions to obtain
time-dependent rate constants.2,5 However, such an exercise,
although illustrative, does not help to solve the overall complex
kinetics since the temporal dependencies of the rate constants

TABLE 3: Modified Mechanism of n-C4H9I/n-C4H10/O2
Oxidative Pyrolysis

no. reaction rate constanta

1.1 C4H9I f NB1 + I 5175.1
1.2 C4H9I f NB2 + I -4508.5
1.3 C4H9I f NB3 + I 2448.5
1.4 C4H9I f NB4 + I -593.7
1.5 C4H9I f NB5 + I -130.9
1.6 C4H9I f C2H5 +C2H4 + I 106.0
2.1 NB1f C2H5 + C2H4 18616.5
2.2 NB2f C2H5 + C2H4 60716
2.3 NB3f C2H5 +C2H4 1.187× 105

2.4 NB4f C2H5 + C2H4 1.906× 105

2.5 NB5f C2H5 + C2H4 2.743× 105

3 C2H5 f H + C2H4 5192.0
4.1 NB1+ O2 f 1-C4H8 + HO2 4.5× 10-13

4.2 NB2+ O2 f 1-C4H8 + HO2 4.5× 10-13

4.3 NB3+ O2 f 1-C4H8 + HO2 4.5× 10-13

4.4 NB4+ O2 f 1-C4H8 + HO2 4.5× 10-13

4.5 NB5+ O2 f 1-C4H8 + HO2 4.5× 10-13

5 H + O2 f OH + O 1.17× 10-12

6.1 H+ C4H10 f NB1 + H2 6.963× 10-13

6.2 H+ C4H10 f NB2 + H2 1.971× 10-13

6.3 H+ C4H10 f NB3 + H2 1.140× 10-13

6.4 H+ C4H10 f NB4 + H2 8.519× 10-14

6.5 H+ C4H10 f NB5 + H2 7.217× 10-14

6.6 H+ C4H10 f C2H5 + C2H4 + H2 7.285× 10-12

7.1 O+ C4H10 f NB1 + OH 5.941× 10-13

7.2 O+ C4H10 f NB2 + OH 1.682× 10-13

7.3 O+ C4H10 f NB3 + OH 9.724× 10-14

7.4 O+ C4H10 f NB4 + OH 7.268× 10-14

7.5 O+ C4H10 f NB5 + OH 6.158× 10-14

7.6 O+ C4H10 f C2H5 + C2H4 + OH 6.216× 10-12

8.1 OH+ C4H10 f NB1 + H2O 2.880× 10-13

8.2 OH+ C4H10 f NB2 + H2O 8.153× 10-14

8.3 OH+ C4H10 f NB3 + H2O 4.714× 10-14

8.4 OH+ C4H10 f NB4 + H2O 3.523× 10-14

8.5 OH+ C4H10 f NB5 + H2O 2.985× 10-14

8.6 OH+ C4H10 f C2H5 + C2H4 + H2O 3.013× 10-12

9.1 O+ C4H10 f SB1+ OH 4.093× 10-12

9.2 O+ C4H10 f SB2+ OH 9.519× 10-13

9.3 O+ C4H10 f SB3+ OH 4.924× 10-13

9.4 O+ C4H10 f SB4+ OH 3.326× 10-13

9.5 O+ C4H10 f SB5+ OH 2.582× 10-13

9.6 O+ C4H10 f CH3 + C3H6 + OH 2.266× 10-11

10.1 OH+ C4H10 f SB1+ H2O 9.905× 10-13

10.2 OH+ C4H10 f SB2+ H2O 2.304× 10-13

10.3 OH+ C4H10 f SB3+ H2O 1.192× 10-13

10.4 OH+ C4H10 f SB4+ H2O 8.051× 10-14

10.5 OH+ C4H10 f SB5+ H2O 6.248× 10-14

10.6 OH+ C4H10 f CH3 + C3H6 + H2O 5.485× 10-12

11.1 H+ C4H10 f SB1+ H2 2.872× 10-12

11.2 H+ C4H10 f SB2+ H2 6.679× 10-13

11.3 H+ C4H10 f SB3+ H2 3.455× 10-13

11.4 H+ C4H10 f SB4+ H2 2.334× 10-13

11.5 H+ C4H10 f SB5+ H2 1.811× 10-13

11.6 H+ C4H10 f CH3 + C3H6 + H2 1.590× 10-11

12.1 SB1f CH3 + C3H6 13210
12.2 SB2f CH3 + C3H6 47196
12.3 SB3f CH3 + C3H6 94957
12.4 SB4f CH3 + C3H6 1.553× 105

12.5 SB5f CH3 +C3H6 2.269× 105

13.1 SB1+ O2 f 2-C4H8 + HO2 2.00× 10-13

13.2 SB2+ O2 f 2-C4H8 + HO2 2.00× 10-13

13.3 SB3+ O2 f 2-C4H8 + HO2 2.00× 10-13

13.4 SB4+ O2 f 2-C4H8 + HO2 2.00× 10-13

13.5 SB5+ O2 f 2-C4H8 + HO2 2.00× 10-13

14.1 SB1+ O2 f 1-C4H8 + HO2 8.48× 10-14

14.2 SB2+ O2 f 1-C4H8 + HO2 8.48× 10-14

14.3 SB3+ O2 f 1-C4H8 + HO2 8.48× 10-14

14.4 SB4+ O2 f 1-C4H8 + HO2 8.48× 10-14

14.5 SB5+ O2 f 1-C4H8 +HO2 8.48× 10-14

15 CH3 + O2 f CH2O + OH 2.74× 10-14

a Notations: NB1-NB5, virtual components ofn-C4H9; SB1-SB5,
virtual components ofsec-C4H9. Rate constant units are s-1 and cm3

molecule-1 s-1.

Figure 5. Concentration (mole fractions× 10-3) vs time profiles of
1-butene and ethylene obtained in kinetic modeling of the oxidative
pyrolysis of n-C4H9I/n-C4H10/O2 mixture: (solid lines) results of
modeling based on the current method of accounting for non-steady-
state effects; (dashed lines) steady state is assumed in all unimolecular
reactions. 1-butene and C2H4 are produced mainly via the competing
reactions 4 (n-C4H9+O2) and 2 (n-C4H9 decomposition), respectively.
Steady-state approximation overpredicts the rate ofn-C4H9 decomposi-
tion at shorter times (most ofn-C4H9 is formed inn-C4H9I decomposi-
tion) and underpredicts it at longer times (most ofn-C4H9 is formed in
abstraction reactions) which is reflected in the temporal product
concentration profiles.
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are typically affected by several activation processes (such as
different reactions producing the same chemical species), the
balance of which changes during the overall process.

The current work is the first description of a method of
accounting for non-steady-state kinetics in modeling large
kinetic schemes. At present, the method is limited to cases of
isothermal kinetics at constant pressure, i.e., conditions when
the master equation needs to be solved numerically only once
to obtain the eigenvalues and eigenvectors of matrixesJ andB
(see section II). Another limitation of the method is the
assumption of energy independence of the rate constants of
reactions between the affected species (A) and other molecules
in the system. This assumption is reflected in the energy-
independence of theu(t) function in eqs 3 and 4. Unfortunately,
our knowledge of the effects of vibrational excitation on
bimolecular reaction rates is not as extensive as in the case of
unimolecular reactions.29 Since non-steady-state effects appear
under conditions where the affected unimolecular reactions are
very fast, only equally fast bimolecular reactions can compete
with these unimolecular processes. Such fast reactions usually
have very small or no energy barriers and their rate constants
are not likely to be dramatically affected by vibrational
excitation. Therefore, the assumption of energy independence
of the rate constants of bimolecular reactions of species A
(reactions of subset M3 in eq 2) is not likely to result in
significant errors.

Chemically activated reactions represent a subset of the
general case of unimolecular reactions. Traditionally, reactions
of chemical activation are understood as those involving
unimolecular transformations of an adduct formed by a recom-
bination of two molecules.9,10,30 The reactions ofn-butyl and
sec-butyl radicals considered in section III represent a somewhat
different type of reactions activated chemically. The active
molecule is formed not via recombination but in an abstraction
reaction. However, the activated molecule is still characterized
by vibrational excitation at energies significantly above the
dissociation barrier, resulting in a considerable fraction of active
molecules dissociating “instantly”. This quick dissociation can
be described in a way in which similar instantaneous channels
of chemically activated reactions are frequently described, i.e.,
as a direct reaction bypassing the formation of the active
molecule:

The general method described in section II for reactions
affected by non-steady-state effects also provides treatment for
systems (a specific case) where relaxation to the steady-state
population energy distribution occurs quickly. In such instances,
the kinetics of only one “virtual component” needs to be
considered explicitly. If active molecules are created with high
initial energies (chemical or photochemical activation), the
“direct” reaction also needs to be included in the overall kinetic
scheme. These systems with fast relaxation to a steady-state
distribution correspond to the cases of steady-state thermal or
chemically activated reactions extensively discussed in the
literature (see, for example, refs 9 and 30 and references therein).
For steady-state chemically activated reactions, the current
method provides a formalism very similar to that of Smith et
al.8
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Appendix

Tables 4 and 5 contain structure and vibrational frequencies
of n-C4H9I obtained in ab initio calculations and fitted transition
state properties for the reaction of decomposition ofn-C4H9I.

Figure 6. Concentration (mole fractions× 10-3) vs time profiles of
2-butene and secondary butyl radicals obtained in kinetic modeling of
the oxidative pyrolysis ofn-C4H9I/n-C4H10/O2 mixture: (solid lines)
results of modeling based on the current method of accounting for non-
steady-state effects; (dashed lines) steady state is assumed in all
unimolecular reactions.

Figure 7. (a) Concentration (mole fractions× 10-3) vs time profile
of n-C4H9 radicals obtained in kinetic modeling of the oxidative
pyrolysis of n-C4H9I/n-C4H10/O2 mixture: (solid line) results of
modeling based on the current method of accounting for non-steady-
state effects; (dashed line) steady state is assumed in all unimolecular
reactions. (b) Concentration (mole fractions× 10-3) vs time profiles
of the first five virtual components (NB1-NB5) of [n-C4H9].

n-C4H10 + OH f C2H5 + C2H4 + H2O
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TABLE 4: Interatomic Distances, Angles, and Vibrational
Frequencies ofn-C4H9I Obtained in ab Initio Calculations
(Symmetrical Structure with C1, C2, C3, C4, and I in the
Plane of Symmetry)

parametera value parametera value

IC1 2.1943 C3C2 1.5335
H32C3C2C4 121.8195 H21C2 1.085
H21C2C1C3 -121.3938 C4C3 1.5286
H11C1C2I 117.5994 H32C3 1.0874
H41C4 1.0851 H11C1C2 112.6965
H42C4 1.0859 C3C2C1 110.9503
H42C4C3 111.1497 H21C2C1 109.6912
H41C4C3 111.0205 C4C3C2 112.3834
H42C3C2H41 119.9791 H32C3C2 109.4712
C2C1 1.5191 C2C1I 112.4602
H11C1 1.0779 C3C2C1I 180.000

Rotational Constants (cm-1): B ) 0.023591 (two-dimensional),
B ) 0.51106 (one-dimensional)

Vibrational Frequencies (cm-1):b, 91.3,c 109.2,c 122.5, 228.4, 234.4,c

364.0, 552.6, 697.9, 739.6, 860.5, 876.0, 972.1, 1005.4, 1022.7,
1077.1, 1189.8, 1194.9, 1270.3, 1296.1, 1296.7, 1370.8, 1394.3,
1445.1, 1456.1, 1461.1, 1463.0, 1473.0, 2843.1, 2850.0, 2866.3,
2870.2, 2901.1, 2909.2, 2912.4, 2940.8, 3003.3

a Interatomic distances and angles in Å and degrees.b Scaled by a
factor of 0.89.c These torsional frequencies were represented in
modeling by hindered one-dimensional rotors with the following
parameters (rotational constants, torsional barriers, symmetry numbers):
(1) B ) 0.866 cm-1, V ) 1063 cm-1,σ ) 1; (2) B ) 1.443 cm-1, V )
915 cm-1, σ ) 1; (3) B ) 5.748 cm-1, V ) 1062 cm-1, σ ) 3.

TABLE 5: Model of the Transition State for the Reaction of
Unimolecular Decomposition ofn-C4H9I

Vibrational Frequencies (cm-1): 110.0, 120.0, 190.0, 200.0, 400.0,
700.0, 876.0, 972.1, 1005.4, 1022.7, 1077.1, 1189.8, 1194.9,
1270.3, 1296.1, 1296.7, 1370.8, 1394.3, 1445.1, 1456.1, 1461.1,
1463.0, 1473.0, 2843.1, 2850.0, 2866.3, 2870.2, 2901.1, 2909.2,
2912.4, 2940.8, 3003.3

Rotational Constants (B), Torsional Barriers (V), and
Symmetry Numbers (σ)

Overall Rotations
2-dimensional B ) 0.023591 cm-1; σ ) 1
1-dimensional B ) 0.51106 cm-1; σ ) 1

Internal Rotations
CH3 torsion B ) 5.74788 cm-1; V ) 1062 cm-1; σ ) 3
C2H5 torsion B ) 1.44278 cm-1; V ) 915 cm-1; σ ) 1
C3H7 torsion B ) 0.86564 cm-1; V ) 1063 cm-1; σ ) 1

Reaction barrier heightE0 ) 211.15 kJ mol-1
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